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The idempotents, resp. Hermitian idempotents, of a unital ring, resp. involutive 
unital ring, form an orthomodular poset. We study these orthomodular posets for 
tings of matrices over the integers modulo m or over Galois fields. In analogy 
to the Hilbert space situation we look for idempotent matrices (projections) 
corresponding to splitting subspaces of finite-dimensional vector spaces. 

1. I D E M P O T E N T S  O F  A U N I T A L  R I N G  

For a real or complex Hilbert space H let H i l b ( H )  be the corresponding 
complete atomistic ortholattice of  all Hilbert subspaces E C H. In a canonical 
way this lattice is isomorphic to the lattice o f  all Hermitian idempotents of  
the Banach algebra B(H)  o f  all bounded ( =  continuous) linear operators A: 
H --+ H. We have 

H i l b ( H )  o P r o j ( H )  

E (=  imP)  o p: H --> H 

whereby P e B(H) with p2 = p and P = P*. Instead o f  the algebra B(H)  
one can start with any involutive unital ring ~t* (Birkhoff, 1967) or even 
with any arbitrary unital ring fit (Flachsmeyer, 1982; Katrno~ka, 1990) to 
get by their Hermitian idempotents,  respectively idempotents, an or thomodu- 
lar poset. Let us recall the statements in full, 

Theorem A. 1.1. Let  ~ be an arbitrary ring with unit. Then the set 
l dem(~ t )  = {xi  x E ~ ,  x z = x} of  all idempotents is an or thomodular  poset 
with respect to the order 

x <-- y: r  = y . x  = x 
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and the orthocomplement 

x l = l - x  

1.2. If  x -< y, then i n f ( y ,  x • exists and i n f ( y ,  x • = y - x.  

1.3. Orthogonality in l d e m ( ~ )  means 

x • y c: ,  x . y  = y . x  = O 

1.4. If  x _1_ y, then sup(x ,  y)  exists and sup(x ,  y) = x + y. 

2.1. If * is a ring involution on ~ ,  then the set H e r m l d e m ( ~ )  = {x~ x 

~ ,  x 2 = x and x* = x} of all Hermitian idempotents is an orthomodular 
poset with respect to the above-mentioned order and the orthocomplemention. 

2.2. For x, y E H e r m l d e m ( ~ )  and x -< y the difference y - x belongs 
to H e r m l d e m ( ~ )  and is the infimum of y and x ~. 

2.3. If  x _1_ y, then x + y belongs to H e r m l d e m ( ~ )  and is the supremum 
of x and y. 

R e m a r k .  In generalization of 1.2 and 1.4 the following properties in 
H e r m l d e m ( ~  ) are fulfilled: 

1.5. If  x, y commute, i.e., x y  = yx ,  then the infimum and the supremum 
exist and 

inf(x, y) = xy 

sup(x,y) = x + y - x y  

Corol lary .  For a commutative unital ring ~t the orthomodular poset 
I d e m ( ~ )  is a Boolean algebra. 

The argumentation is as follows. By the commutativity l d e m ( ~ )  is an 
ortholattice and it is also distributive. Namely, 

x /,, ( y  v z) = x ( y  v z) = x ( y  + z - yz)  = x y  + xz  - x y z  

(x A y)  v (x /x z) = x y  v y z  = x y  + y z  - x y z  

2. THE BOOLEAN ALGEBRA OF IDEMPOTENTS OF THE 
RING Zm 

Let Zm be the ring of the rests 0, 1, 2 . . . . .  m - 1 of the integers rood 

m. Now, Zm is a commutative unital ring, therefore I d e m ( Z m )  has to be a 
finite Boolean algebra. How does one get it? 

T h e o r e m  1. 1. The Boolean algebra of all idempotents of the ring Zm 
is isomorphic to 2 k, where k is the number of the distinct prime factors of m: 

I d e m ( Z m )  ~ 2 k, m =- p~p~Z  . . .  p~k, 2 <-- Pl  < P2 < " '"  < Pk <- m 

where p~ are primes. 
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2. One obtains the nontr ivial  complemen ted  pairs  o f ldem(Zm)  as fol lows:  
Let  A, B be any nontrivial  spli t t ing of  the set { 1, 2 . . . . .  k}, i.e., A # 

O , B r  A N B = O ,  A U B =  { 1 , 2  . . . . .  k}. 
Define a : =  I I  p ~  (c~ e A), b : =  I I  p ~  ([3 E B). 
Then a, b are re la t ively prime,  (a, b) = 1; therefore there exist  integers 

u, v with a" u + b.  v = 1. 

By 8 : =  au mod m and b : =  bv mod m one has a complemen ted  pair  
8, b in ldem(Zm). 

Proof. For  8, b it remains  to show that in Idem(Zm) the fo l lowing are 
satisfied: ~ A b = 0 and 8 v b = 1. Accord ing  to 1.5 o f  the Remark  this means  

~ - b = 0  and ~ + b - ~ . b =  l i n Z m  

But this holds by  defini t ion o f  ~ and b. [] 

Table I shows the si tuation for some m. 

3. H O W  M A N Y  I D E M P O T E N T  M A T R I C E S  E X I S T  O V E R  Zm? 

For  a g iven model  m and a given format  number  n we ask for the number  
of  idempotent ,  resp. Hermit ian  idempotent ,  matr ices  o f  size n X n over  the 
bas ic  r ing Z .... 

card(Idem(Mat(n X n, Zm))) 

card(Hermldem(Mat(n  X n, Zm))) 

We will  take the involut ion in the r ing Mat(n X n, Z,n) of  matr ices  over  Z,n 

Table I. 

m 2 3 4 5 7 8 9 11 13 16 17 19 23 25 27 29 
ldem(Z,.) 1 

0 

m 6 10 12 14 20 21 22 24 26 
ldem(Z,,) 3 4 5 6 4 9 7 8 5 16 7 15 11 12 9 16 13 14 

0 0 0 0 0 0 0 0 0 

m 

Idem(Zm) 
30 42 60 
I l 1 

16 21 25 7 15 22 16 21 25 
6 10 15 21 28 36 36 40 45 

0 0 0 
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Table II. 

Idem(~) Hermldem(~) Idem~ Hermldem(~) 
lot m card card m card card 

n = 2 n = 2 
2 8 4 14 464 40 
3 14 6 15 448 36 
4 26 6 16 386 18 
5 32 6 17 308 18 
6 112 24 18 880 56 
7 58 10 19 382 22 
8 98 10 20 832 36 

n = 3  
9 110 14 2 58 10 

10 256 24 3 236 20 
11 134 14 4 898 34 
12 364 36 5 1552 52 
13 184 14 

as the matrix transpose: A ~ A v. We are far from a general sufficient answer. 
With the help o f  computers we counted the list in Table II. 

We conclude this section with a few remarks on the order structure of  
Idem(~)  and Hermldem(~).  Also with the help of  computers we identified 
some of  them and obtained their Greechie diagrams. 

Remark. 1. Hermldem(Mat(2 X 2, Z6)) is the amalgam of  two Boolean 
algebras 24 with the Greechie diagram given in Fig. 1. 

2. In Idem(Mat(3 • 3, Z2)) the nontriviat elements are atoms, resp. 
antiatoms (28 of  each sort). This orthoposet fails to be a lattice. The two atoms 

( 1 0 0 ~  / 1 1 0 ~  
ooo/ !~176176 
ooo/ \00o/ 

have the following two antiatoms as c o m m o n  successors 

( 100\ 
0 1 0 ]  [ 0 1 0  / 
0 0 0 /  \ 0 1 0 )  

Another argumentation that this orthoposet cannot be a lattice follows from 

Fig. 1. 
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Fig. 2. 

Greechie's amalgam theorem (Beran, 1985). Idem(Mat(3 • 3, Z2) ) consists 
of 28 copies of the maximal Boolean subalgebra 23. Each atom is covered 
by three copies of 23 . 

Each maximal Boolean subalgebra belongs to a quadrangles loop with 
the Greechie diagram shown in Fig. 2. Therefore the lattice structure is not 
valid. The orthoposet with the shown Greechie diagram is known as Janowitz 
poset J18 (Janowitz, 1968; Beran, 1985, pp. 148ff). 

In Fig. 3 we draw an order diagram of Jls restricting to the 8 atoms 
and their antiatoms. This shows that the atoms 1 and 5 have the common 
successors 3 ~ and 7 • analogously for 3, 7 and 1 • 5 I.  

4. T H E  O R T H O M O D U L A R  P O S E T  OF S P L I T T I N G  SUBSPACES 

Let F be any commutative field and V = F n the finite-dimensional 
standard vector space over this field, n = dim V, n -> 1. 

Fig. 3. 
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The standard inner product (. , .): V • V --~ F is defined by (x, y) 
�9 = E~Lj xi'Yi for vectors x = (xl, x2 . . . . .  xn), y = (Yl, Y2 . . . . .  Yn) o f  V. This 
inner product is a symmetric bilinear form on V. Two vectors are called 
orthogonal (with respect to the standard inner product) 

x 3_ y iff their inner product is zero: (x, y) = 0 

It may be that there are nonzero isotropic vectors in V, i.e., x 3_ x without 
x = 0. The natural base bl = (1, 0, 0 . . . . .  0) . . . . .  bn = (0, 0 . . . . .  0, 1) 
forms an orthogonal base of  V. For  any subset A C V let 

A • : =  { x ! x  e V w i t h x i  a f o r a l l a  ~ A }  

Lemma. The correspondence A ~ A • in the power set Pow(V) of  the 
vector space V has the following properties. 

1 . 0  • = V = {0} •  • = {0}. 
2. A C B ~ B  • C A  L. 
3. A"  is always a linear subspace. 
4. A _C A l L ;  moreover, A • = span A. Every linear subspace F is 

orthogonal closed: F • = F. 
5. For linear subspaces E, F of  V, 

( E +  F)  l = E "  N F  • and ( E f 3  F)  L = E • + F  • 

Proof Properties 1 -3  are straightforward. 
Ad  4. A C A • is straightforward. A L l  is linear; therefore spanA C_ 

A z ' .  Now we assume an element b e AZL\spanA. Take a vector base B of  
spanA. Now, B U {b} can be extended to a vector base B of  u Define a 
linear functional3q V ~ F by se t t ingf (b)  = 1 a n d f  = 0 on B\{b} .  There 
is a unique representation vector y e V for f, i.e., f ( . )  = (- ,  y). This y 
belongs to (spanA) L and therefore to A • But 

(y, b) = 1 implies b not orthogonal toy ,  i.e., b q A • 

By this contradiction it must  be that A <-L = s p a n A .  
A d 5 .  E C  E +  F a n d F C  E +  F i m p l y ( E +  F)  • C E L f-1 F • 
For the converse let x e E L f-/ F L and u e E, v e F. 
Then x 3_ u and x 3_ v and therefore x 3_ (U + v), i.e., x e (E + F )  L. 

T h u s E  L f q F  l C _ ( E +  F)  • 
The other equation can be proven by application of  (E + F )  • = E • f3 

F L and the orthogonal closedness o f  linear subspaces. Namely, (E f"l F )  • 
= (E •177 (3 F •177  • = ((E L + FL))  LL = E L + F L. m 

Now we consider the set Linsub(V) of  all linear subspaces o f  the finite- 
dimensional vector space V = F n over the field F with respect to the partial 
order o f  inclusion and the unary operation L of  orthogonality. The poset 



Orthomodular Posets of Idempotents 1365 

(Linsub(Fn), C_) is a complete atomic modular lattice which is sometimes 
called the (n - 1)-dimensional projective geometry PG,_  1(F) over the field F. 

One has the following result. 

Theorem 2. (Linsub(Fn), C, 1), n natural number --> 1, is a unit closed 
SOP (semiorthoposet) in the sense of  Gudder (1994) in which the Morgan 
rules hold: 

( E v F )  • = E  l / x F  • 

( E A p ) I = E  l v F  1 

This SOP in general contains strongly inconsistent elements, which means 
that there can be a linear subspace F for which F = F • 

Proof The first part is the content of  the lemma. The supremum E v 
F equals E + F and the infimum E ^ F equals E A F. For the existence of 
strongly inconsistent elements see, for example, the case F = GF(2) = Z2. 
Then Linsub(F 2) contains only the following three 1-dimensional subspaces: 

E = (00, O1 I 

F = {00, 10} 

G = {00, 11} 

One h a s E  • = F , F  1 = E, a n d G  = G 1. 
The Hasse diagram of Linsub(F 2) is the same as that of the subgroup 

lattice of the Klein four-group De. �9 

Now we consider such linear subspaces F of V = F ~ which split V into 
the sum of F and its orthogonal F • i.e., V = F + F • In the notation of 
Gudder these are the sharp elements of  the SOP Linsub(Fn). Because of the 
lemma the splitting property V -- F + F 1 is equivalent to F f3 F • = {0}. 
The equivalence o f V  = F + F • and F (q F • = {0} is also a consequence 
of closedness of the SOP Linsub(F"). Let Splittlinsub(F") be the set of all 
the splitting linear subspaces F of F". The following holds for this set. 

Theorem 3. (Splittlinsub(F), C_, • is an orthomodular poset (OMP) 
which is isomorphic to Hermldem(Mat(n • n, F)) by the isomorphism 

F ~ P (projector P: F" --+ F ~ with imP = F, ker P = F 1) 

(Splittlinsub(F"), C, • is in general not a sublattice of (Linsub(F~), C). 

Proof Let S = Splittlinsub(P). Then {0}, F ~ belong to S. Thus S is 
with respect to the inclusion a bounded poset and 1: S --~ S is an orthocomple- 
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mentation on it. This orthoposet is in the case F = GF(2) and V = F 3 not 
a sublattice of  (Linsub(F3), C_). Namely the pairs 

E =  {000, 100}, E • = { 0 0 0 , 0 0 1 , 0 1 0 , 0 l l }  

and 

F = {000, 111}, F • = {000, 011, 101, 110} 

are splitting, but E • n F 1 = {000, 011} is not splitting because (E • N 
F•  • = {000, 011, 100, 111}. 

Now we have to argue for the isomorphism between Splittlinsub(F n) 
and Hermldem(Mat(n • n, F)). Let (F, F ' )  be a pair of  splitting subspaces. 
To this pair corresponds a projection pair (P, Id - P), where P is defined by 

P x = u i f f x = u  + v with u e F, v ~ F "  

P: F n --+ F n belongs to the unital ring Linop(F)  of all linear operators on 
F n. This ring is endowed with an involution according to the standard scalar 
product: Linop 3 A ~ A* defined by 

(A 'x ,  y~ = {x, Ay} for all x, y ~ F" 

The considered projection P is a Hermitian idempotent. Conversely, a Her- 

O .O 
L/ 

Fig. 4. 
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mitian idempotent Q E Linop(F n) is determined by a splitting pair (F, F l ) .  
One has only to take F := imQ. Then ker Q _L F because for x E ker Q 

(x, O z ) = ( O * x , z ) = ( Q x ,  z ) = O  for all z E F n 

Thus ker Q c F I. But for y ~ F • one has (y, Qz) = 0 for any z. Then (Qy, 
z) = 0. This implies Qy = 0, i.e., F • C ker Q. Thus (imQ, ker Q) is an 
orthocomplemented pair. Moreover it splits, because x E imQ f3 ker Q 
implies Qx = 0 and x = Qz. Now Q2 = Q and therefore Qx = Q2z = Qz 
= x, i.e., x = 0. Via the standard base in F n each Hermitian idempotent 
linear operator corresponds to a Hermitian idempotent matrix over F. [] 

Remark. For the first Galois fields F = GF(2), GF(3), GF(4), GF(5) 
we  identified the orthoposets of  SplittingLinsub(F 3) [~ Hermldem(Mat(3 • 
3, F))] by the Greechie diagrams given in Fig. 4. 
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